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Turbulent erosion of a stably stratified fluid 
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As a model for the erosion of a stably stratified fluid by an overlying turbulent region, 
the rate of advance of the mixing interface is calculated in terms of the probability 
distribution for eddies as a function of their size and velocity. Predicted rates of 
advance are then evaluated for two current models of intermittency in small-scale 
turbulence. Compared to available experimental data, one intermittency model, the 
B-model, is found to be in good agreement, while the other, the log-normal hypothesis, 
is discordant; unfortunately, the Reynolds number of the existing experiments is not 
large enough to yield a definitive test. A t  higher Re, similar experiments might be a 
useful complement to the alternative of measuring high-order moments. Some related 
experiments are suggested to test the model and measure the fractal dimension D.  

1. Introduction 
It is not unusual to have a fluid a t  rest with a stable density stratification in the 

vertical direction, and with the variation of density due to a miscible contaminant that 
obeys an advective diffusion equation (‘salt ’, or ‘heat in Boussinesq approximation’). 
The oceans are, of course, stably stratified in just this way, by both increasing salinity 
with depth and by decreasing temperature (for recent introductory reviews, see 
Flatte et al. 1979, ch. 1;  Garrett & Munk 1979). If, overlying the stably stratified 
region, one has a mixed region (also like the oceans) in which the fluid is in driven, 
turbulent motion, then there is a continual erosion of the stable fluid as wisps of it are 
entrained, and ultimately mixed, into the turbulent flow. In the ocean, the phenomenon 
is called ‘erosion of the thermocline’, and it is investigated both by observation in situ 
(e.g. Grant, Moilliet & Vogel1968), by laboratory experiment (e.g. Rouse & Dodu 1955; 
Turner 1968, 1973; Thompson 1969; Kato & Phillips 1969; Kantha & Phillips 1977), 
and by theoretical modelling (e.g. Pollard, Rhines & Thompson 1973; Niiler 1975). 
Phillips (1977, 9 6.7) reviews the subject. 

It does not appear to have been pointed out previously that the body of experimental 
data on this subject, turbulent erosion of a stably stratified fluid, taken together with 
a straightforward theoretical model, has direct bearing on the apparently rather 
different theoretical problem of producing a satisfactory model for small-scale inter- 
mittency in turbulent flow. The purpose of this paper is to indicate a connection 
between these two areas of current interest. It turns out that of two current models 
for small-scale intermittency , both of which generalize the original Kolmogorov ( 1941) 
self-similar theory, namely the Kolmogorov (1962) ‘ log-normal hypothesis’ and the 
‘p-model’ of Frisch, Sulem & Nelkin (1978), one agrees remarkably well with the 
existing data on turbulent erosion, while the other seems to be in disagreement. 
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Unfortunately, the Reynolds number of the experiments is not sufficiently large to 
allow any definitive conclusion. A t  larger Re, testing models of intermittency against 
macroscopic erosion rates might be a complimentary, and perhaps therefore useful, 
alternative to testing them against measured high-order statistical moments of 
turb ulen t flows. 

In 2, a model is developed which relates the intermittency, as a function of scale 
and velocity, to  the rate of turbulent erosion. In  $3, the predictions of the two inter- 
mittency models are calculated. The data are briefly reviewed in § 4, and conclusions 
are drawn. Some additional predictions in the case of the /3 model are discussed in 5 5. 

2. Model for turbulent erosion of a stably stratified fluid 
The turbulent flow is characterized by some integral (largest) length scale I ,  and by 

some r.m.s. velocity uo of the turbulent eddies on the integral scale. We assume that 
the Reynolds number Re of the integral scale is large, with 

Re $ 1  (1) 

strongly satisfied, so that the inertial range extends over some logarithmic interval to 
smaller scales. Also, we make the usual convenient simplification of considering a 
discrete sequence of eddy scales, 

1, = lO2-n,  n = 0,1,2 ... . (2)  

What we require of an intermittency model, for our present purpose, is that it tell us 
the probability of a region of size I ,  containing an eddy with mean-square velocity 
between u2 and u2+du2, i.e. that the model define a probability density function 
P(u2, Z,,), normalized so that 

Jp(u.2, z,) du2 = 1 for all n. (3) 

Much of the probability may be concentrated in a delta function at  u2 = 0,  if the inter- 
mittency model posits a ‘clean’ separation of active and inactive regions on scale 1,. 

Before proceeding, we need to consider what other dimensionless numbers besides 
Re can enter the problem (cf. Turner 1968). The most important will be the Richardson 
number Ri associated with the density discontinuity 8p at the boundary between the 
turbulent and stable regions. As time increases and the turbulence erodes farther into 
the stable region, this density discontinuity will in general increase. Following 
Phillips (1977) we define 

(4) 

where g is the acceleration of gravity and po  is the mean fluid density in the mixed 
region. The rate of turbulent erosion will depend primarily on Ri. 

Of lesser importance is the Peclet number Pe associated with the diffusivity K of the 
diffusion process (whether heat conductivity or saline molecular diffusivity), 

* g @ l o  
PO 4 

Rt 3 - 

Pe = l o u O / ~ .  ( 5 )  

In  fact, as Turner (1968) points out somewhat differently, there is a regime where the 
rate of turbulent erosion should be independent of Pe. The physical picture is that a 
heavy wisp is lifted out of the interface by a turbulent eddy, and quickly mixed down 
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to the Kolmogorov microscale by turbulent mixing. If the diffusivity is large enough 
so that, on scales below the Kolmogorov microscale, the wisp can completely lose its 
identity into its surroundings before gravity can pull it back to the interface, then the 
precise diffusion rate will not matter. We can make this condition quantitative at this 
point in the context of the Kolmogorov (1941, hereafter cited as K41) theory, and 
below we will comment on the small modifications required by intermittency effects. 

An undiffused wisp is drawn downward with an acceleration g(Sp/p,). According to 
K41, the size of the microscale 1, is l0/Re%, and the diffusion time across this scale is 
Z ; / K .  Therefore, the condition that the wisp acquire a downward velocity no larger than 
the integral scale turbulent velocity is 

which can be written as 
Ri Pe < Re$. 

Alternatively, one might take the point of view that, once eroded from the stable 
layer, a wisp will always have available a t  least one eddy turnover time to diffuse into 
the surrounding fluid. In this case, the condition analogous to equation (6a )  is 

- 1; <lo 
K uo 

Pe < Ret, 
which can be written as 

which is more easily satisfied than (6b)  for Ri =- 1 .  Turner (1968) found different 
results for turbulent erosion when the diffusive process involved heat and salt, and 
these differences seem possible to understand in terms of condition (6b)  or (7 b) holding 
in the former, but not the latter, case, because of the latter's higher Pe (see $4) .  

Below, in the context of specific intermittency models, we will find that there are 
some other conditions on the relative magnitudes of Ri, Pe, and Re which must be 
assumed. For typical experiments with heat conduction in water, Re will pose the most 
stringent limits, since it is difficult to achieve 

Re > lo3 (8) 

for laboratory flows. We discuss this further below. 
Let us consider now an eddy of size 1 that finds itself just at the interface of the stably 

stratified region. Is it able to scour out a pocket of size - 1 from the stable region? The 
answer depends on whether the Reynolds stress of the eddy exceeds the force necessary 
to lift the stable pocket through a height 1, i.e. whether 

P 4  > S S P l  (9 )  

(cf. Phillips 1977, equation 6.7.2). Equivalently, up to a constant of order unity, 
condition ( 9 )  can be described as requiring that the local shear on the scale 1 exceed the 
critical value necessary to  destabilize the density interface via Kelvin-Helmholtz 
instability. Using equation (4), (9) becomes 
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When scouring is possible, it should proceed at about the eddy turnover velocity u1 
of the scouring eddy. Since P(u2, l,)duz is the fraction of volume in which eddies of 
velocity u2 to u2 + du2 are actually present, it should also be roughly the fraction of 
area of the interface plane upon which such eddies are incident at  any given time. 
Therefore, the mean erosion velocity of the interface due to the scale 1 is 

%,I = jm uP(u2, I )  dU2,  
~8 Ri 2/20 

where the lower limit comes from equation (10). And, integrating over the logarithmi- 
cally independent scales I , ,  the total erosion velocity, scaled to the integral scale 

The equality is understood to allow for an additional overall constant of order unity. 
The right-hand side of (12) is a function of the Richardson number only. This can be 
made explicit by defining 

p = In (Zo/ l ) ,  s = U ~ / U ;  (13) 
so. 

We will now proceed to use functions P ( s , p )  from the log-normal and /3 models to 
calculate u,/uo. 

3. Predictions of the log-normal and #I models 
A recent review of intermittency models in turbulence is found in Rose & Sulem 

(1978). The log-normal model is described by Kolmogorov (1962), Obukhov (1962), 
Yaglom (1966), Gurvich & Yaglom (1967) and Mandelbrot (1972). For our purposes 
here, we can take the model to say that the variable 

where u1 is an eddy velocity on scale I, is normally distributed with a variance 

and with a mean value which is determined by the KArmAn-Howarth constraint, that 
the average value of u!/l be independent of 1. In equation (1 6), p is a universal dimen- 
sionless constant, while A depends on the macroscopic flow. 

Equations (15) and (16), and the KArmAn-Howarth condition, imply a probability 
density function 

with 

(Note that one changes variables in P by the rule for probability densities, 

P(y,  p )  dy = ( 2na2)-4 exp [ - (y + 4 ) 2 / 2 r 2 ]  dy (17) 

Q = *(PP+A) .  (18) 

P[f(s), &)I d[f(s)l = W 9 P )  ds.1 
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If p = 0, then we recover K41 without intermittency. A typical value which is 
supposed to model observed intermittency adequately is 

P = 4  
although there is some evidence (e.g. Nelkin 1981) that a value as small as 0.25 might 
be preferred. 

Equation (1 1) now gives, defining y = In Ri, 

The integral over scales Idp (equation (14)) cannot be evaluated in closed form, but its 
asymptotic limits for both Ri > 1 ( y  --f 00) and Ri c 1 ( y  --f - 00) are evident by 
inspection, since the complimentary error function erfc is essentially a step function 
at zero argument. The result is 

The constants of proportionality, which involve p, are always near unity. With 
p = 0-5, equation (20) gives u ” ~  Ri-1.40 

UO 

as a prediction of the model. Note that if p = 0 ,  so that K41 is reproduced, the power- 
law dependence goes over to Ri-’. 

We now turn our attention to the /3-model of Frisch et al. (1978), also reviewed by 
Rose & Sulem (1978), and based in part on earlier work of Mandelbrot (1976) and 
Novikov & Stewart (1964). Here the basic idea is that on scales 1, < 1, the eddies of 
that scale are not space-filling, but are rather concentrated in ‘ active regions ’ that 
occupy a fraction Pn of the total volume. The filling factor Pn is taken to have a 

(22) universal power-law dependence pn = ( 1 n / 2 0 ) 3 - ~  

where D is between 2 and 3, and is the ‘self-similarity’ or ‘fractal’ dimension. When 
the rate of energy transfer between scales n and n + 1 is taken to be independent of n, 
as in K41, one obtains a dependence of eddy velocity ul on 1, 

K41 is obtained in the limiting case of D = 3; the best value of D to explain intermit- 
tency data is supposed to be 2.5 or possibly 2.75. 

In  its simplest form, the model gives only a single characteristic velocity for uI, 
rather than a probability distribution, so our probability function P(s, p )  will have 

(24) the form 

where the S’s are Dirac delta functions. The integral of (1 1) gives 

Ul/U0 = ( l / lo)%-.  (23) 

P(s,P) = Pn S(s-sn) + (1 - P n )  S(S)  
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Equation (12) then gives 

The somewhat surprising result is that the P-model gives an Ri-1 dependence inde- 
pendent of D ,  by contrast with the log-normal model which gives this dependence only 
in the K41 limit. It is not difficut to show (Nelkin, private communication) that Ri-’ 
is also obtained in the case of a generalized /3 model which allows an arbitrary, but self- 
similar, distribution of velocities in the active regions (instead of the single charac- 
teristic velocity assumed above). 

We are now in a position to note the limits of validity of this Ri-’ dependence which 
were alluded to in the discussion preceding equation (8). The largest eddy which is 
able to erode has (equation (25)) 

1 

4 = Ri3/(2D-7), 
lo 

while the Kolmogorov microscale has a size of order 

‘P - Re-3/(10-2D) F -  

(27) 

(cf. Rose & Sulem 1978, equations 7.4-7.6). The conditions that (27) be larger than 
(28), so that ue/uo should be almost independent of Re, is Ri4 < Re for D = 3, which is 
not well satisfied by laboratory experiments; for D = 2.5, however, it is 

Rif  < Re (29) 

which is marginally satisfied, a t  least for Ri not too large. 

D = 2.5 and become 
The conditions which yields (6 b )  or (7 b )  in the K4 1 theory are slightly modified when 

Ri Pe c Re; (30a) 

or Pe < Re%. (30b) 

Finally, for the above model to hold, one ought to require that the diffusion thickness 
of the interface, as it is eaten away at  velocity u,, is smaller than the size of the eroding 
eddy. The diffusion thickness is given by 

K K R ~  1 , N - N -  

so, comparing to equations (4), (5), and (27), 

For D = 2.5 this is 
Rit c Pe. 

(32) 

(33) 

This condition is more restrictive than a related one, derived by Phillips (1977, 
equation 6.7.3) in a different context, that the turbulent erosion proceed faster than 
the stable stratification is restored by the diffusion process. Phillips’ condition gives, 

Ri2 < Pe 
independent of D. 
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FIQWRE 1. Erosion rates in a fluid stratified by a temperature gradient, plotted against Richardson 
number of the integral turbulent scale and the density discontinuity, from Turner (1968, 1973) 
and Thompson (1969). The solid line is the Ri-' prediction of the B-model, normalized by 
equation (26) with D = 2-5 (i.e. n.ot adjusted to fit the data). The Kolmogorov log-normal model 
predicts a steeper slope, Ri-l'4. 

4. Review of data and conclusions 
Turner (1973, ch. 9) and Phillips (1977) review the experimental data on mixing 

across density interfaces in some detail, including the works of Rouse & Dodu (1955), 
Cromwell(1960), Turner (1968), Thompson (1969), Kato & Phillips (1969), Kantha & 
Phillips (1977), and others. In the interpretation of these results, one must bear in mind 
the variety of conditions represented, not only in terms of the parameter space of 
Re, Pe, Ri, but also in terms of issues such as the presence or absence of a mean shear in 
the turbulent region, relative to  the stable layer. (Our model assumes no such mean 
shear.) 

The experiment of Turner (1968) on a temperature stratified fluid, with flow par- 
ameters measured by Thompson (1969), seems to have the most direct bearing on the 
predictions of this paper, since conditions (l) ,  (29), (30), and (33) are satisfied, or 
violated only weakly (at the higher values of Ri). Typical parameters for the experi- 
ment are Re - lo3, PelRe (=  Pr) - 10, and Ri - 10-100. Published data from this 
experiment are shown in figure 1.  

It is immediately evident that the data vary as Ri-l, which is the prediction of 
equation (26) for the /3-model, and that the data seem to be incompatible with the 
prediction of the log-normal model for ,u = 4, namely Ri-1.4 (equation (21)). The 
physical root of the difficulty with the log-normal model is that its high-velocity tail 
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a t  small scales is much too powerful, so that the K&rm&n-Howarth condition forces 
down the mean eddy velocity, and thus the model predicts too fast a decrease of 
erosion with increasing Ri. 

The solid line in figure 1 has slope RiP, and has the normalization of equation (26), 
without any correction factor. In fact, a correction factor ought to  be allowed, since 
our fundamental assumptions, that a scouring eddy erodes a t  its eddy velocity ul, and 
that eddies separated by a factor 2 in 1 contribute independently, can certainly be 
true only up t o  a factor of order unity. If one fits to the data, one finds that a factor of 
about 4 should be inserted on the right-hand side of equation ( 1 1 )  and subsequent 
equations. 

Unfortunately, there are several reasons for skepticism in regarding the existing 
experimental evidence as a definitive test of the intermittency models. First, the 
required inequalities for validity of the model are not strongly satisfied by existing 
experiments. The fundamental problem is that Re is too small. In  fact, a t  Re = lo3 
one has only barely begun to  have a recognizable inertial range in the turbulent 
cascade. A related point is that  there may be a minimum value of Re for which 
departures from K41 become observable. Van Atta & Antonia (1980) suggest 
Re > 3 x lo3,  which is larger than achieved in Turner’s experiments. 

Second, the values o f p  is uncertain, and might be as small as 0.25 (Nelkin 1980). As 
p approaches zero, the predictions of the log-normal model become identical to those 
of the K41 limit. For these reasons, the striking agreement with the data may, at the 
presently accessible experimental range of Re, only reflect agreement with the limiting 
case of K41. Experiments a t  larger Re could be more definitive. 

Turner’s (1968, 1973) data on the salt-stratified case does lend some support to the 
present model, a t  least indirectly. Those data have the same Ri and Re, but Pe is a 
factor of lo2 larger. This causes conditions (30a) and (30b) to fail rather drastically for 
Ri > 3. One in fact sees in the data that the salt and heat points are compatible up to  
about this value, while for larger values of Ri, the salt data fall on a different power law 
(estimated by Turner as Ri-4). 

Our conclusion, which given the simplicity of the model and relative paucity of the 
data must naturally be tentative, is that the P-model is in good agreement with the 
data, predicting in fact the Ri-I behaviour that it is observed. If Ri-1 persists a t  higher 
values of Re, then it will conflict with the prediction of the log-normal model. 

5. Possibility of further tests 
The Ri-l prediction of the P-modelis independent of the valueof its unknown fractal 

dimension D (2 < D < 3).  On the other hand, the region of validity of this prediction 
does depend on D, namely as 

(generalization of equations (6 b )  and (30 a), or 
Ri Pe < Re31(5-D) (34a) 

(34b) Pe < Re3K5-D) 

(generalization of equations ( 7  b )  and (30 6 )  ; 
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(from equations (27) and (28)). All three of these conditions are inequalities with Ri 
on the small side. This suggests that one might determine D (and simultaneously 
check the model of this paper) by measuring where the break in the Ri-’ law occurs as 
Ri is increased, and determining the functional variation of this break with changing 
Pe and Re. 

One needs to keep in mind that the inequalities are only approximate, and they may 
have unknown constants of order one on their right-hand sides; however the value of 
D can, in principle, be determined independently of these constants, since D affects the 
power-law slope of the variation of the break with Pe or Re. 

I thank Mark Nelkin, David Nelson, Carl Wunsch, and Walter Munk for helpful 
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PHY 80-07351. 
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